
lnnregrared Design and Process 7echnol&.v. IDPT-2005
Printed in the United States of Amenca, lune, 2005

0 2 0 0 5 Society for Design and Process Science

ABSTRACE

A Tool for Requirements-Based Programming

James L. Rash, Michael G. Hinchey
NASA Goddard Space Flight Center

Information Systems Division
Greenbelt, MD, USA

{james.l.rash, michael.g.hinchey}@nasa.gov

Christopher A. Rouff
SAC

Advanced Concepts Business Unit
McLean, VA 22102
rouff c@saic.com

Denis GraCanin
Department of Computer Science

Virginia Tech
Blacksburg, VA

g racanin@vt.edu

John Erickson
Department of Computer Sciences

University of Texas at Austin
Austin, TX

jderick@cs.utexas.edu

..

..

..

In order to demonstrate the correctness of a system, de-
velopers today must resort to either exhaustive testing or
some combination of testing and formal verification follow-
ing the use of appropriate methods in the development pro-
cess. While formal methods have afforded numerous suc-
cesses, their application today presents serious issues, e.g.,
costs to gear up to apply them (time, expensive staff), and
scalability and reproducibility (as long as standards in the
field are not settled). The testing path cannot be walked to
the ultimate goal, because exhaustive testing is infeasible
for all but trivial systems. So system verification remains
problematic, as do, similarly, system and requirements vali-
dation. The predominant view today is that provably correct
system development depends on having a formal model of
the system-leading to a desire for a mathematically sound
method to automate the transformation of customer require-
ments into a formal model. Such a method, an augmen-
tation of requirements-based programming, will be briefly
described in this paper, and a prototype tool to support it
will be presented. The method and tool enable both re-
quirements validation and system verification for the C~LSS

of systems whose behavior can be described as scenarios.

An application of the tool to a prototype automated ground
control system for NASA missions is presented.

I. INTRODUCTION

Automating the software development process has been
one of the major goals of Software Engineering almost from
the outset [IO]. Such automation promises to reduce errors,
increase productivity, and improve the quality of code.

Approaches such as Model-Based Development (MBD)
or Model-Driven Development (MDD) do much to facil-
itate automatic code generation. The basic tenet of these
approaches is that higher quality code can be produced by
having developers focus on the generation of an appropri-
ate model, from which code can be generated. This is
in contrast with a more traditional development approach
whereby models (designs) are continually updated in vari-
ous iterations of portions of the system development lifecy-
cle. Clearly, having an appropriate model up front simpli-
fies the task of automating code generation.

Automatic code generation has been successful, and
there are a number of commercially-available tools, many
of which support particular notations, such as the Unified
Modeling Language (UML) or Specification and Design

2

Language (SDL). A number of tool vendors successfully
market tools to support code generation from these nota-
tions (e.g., Rational’s ROSE and Telelogic’s Tau).

11. LIMITATIONS TO CURRENT APPROACHES

We will not critique commercially available (nor public
domain) tools for automatic code generation here. We are
not questioning the quality or integrity of the code produced
by available tools.

However, we do observe that many popular tools have
been seen to produce large amounts of extraneous code that
is unrelated to the model from which code is being gener-
ated, and that cannot be justified as merely necessary stan-
dard code [9]. In addition, all available tools are constrained
by the quality and appropriateness of the model from which
the code is to be generated [IO].

Developing an appropriate model ab initio is no trivial
task. As Brooks [3] puts it, specifying and designing the
system is the main challenge, not coding it and testing that
code: I believe the hard part of buiMing sofmare to be
the specification, design and testing of this conceptual con-
struct, not the labor of representing it and testing the$delity
of the representation.

The Specification-lmplementation Gap refers to the sig-
nificant change that must be made in transforming a spec-
ification (expressed at suitable levels of abstraction and in
a manner suitable for various types of analysis) into an ef-
ficint implementation in a programming language [9], [IO].

The greater problem, or gap, however, is the Analysis-
Specification Gap, which refers to the jump, and conse-
quent difficulty, of taking (often complex) requirements and
specifying them in a manner that is clear, concise, complete
and yet amenable to analysis. This gap is significantly more
difficult to overcome [9], [IO].

Requirements-Based Programming (RBP) [5], [6] repre-
sents a great step in that direction.

111. FORMAL REQUIREMENTS-BASED PROGRAMMING

Requirements-Based Programming (RBP) essentially
extends Model-Based Development so that requirements
are systematically and mechanically transformed into ex-
ecutable code.

This may seem to be an obvious goal in modem system
development, but RBP does in fact go a step further than
current development methods. RBP seeks to ensure that the
ultimate implementation can be fully traced back to the ac-
tual requirements (although, as proposed by its advocates,
it does not necessarily entail full mathematical provability
of the equivalence of a set of requirements and its imple-
mentation) [161.

Our belief is that Requirements-Based Programming
should be formal [171. That is, that in addition to supporting
tractability from requirements through to code, there should
be an underlying formalism. Without such formality, proof
of correctness is impossible [2].

A. R2D2C

R2D2C (Requirements-to-Design-to-Code) is a NASA
patent-pending approach to the engineering of complex
computer systems, where the need for correctness of the
system, with respect to its requirements, is particularly
high. This category includes complex NASA mission soft-
ware, flight software, and ground control systems, amongst
others.

The approach, described in greater detail in [IO], [17],
embodies the main idea of requirements-based program-
ming. It goes further, however, in that the approach of-
fers not only an underlying formalism, but also full formal
development from requirements capture through to auto-
matic generation of provably correct code. Moreover, the
approach can be adapted to generate instructions in formats
other than conventional programming languages; these in-
clude, for example, instructions for controlling physical de-
vices, and rules embodying the knowledge contained in ex-
pert systems.

B. Requirements to Design to Code

R2D2C takes, as input, system requirements written by
engineers (and others) as scenarios in natural language, or
UML use cases, or some other appropriate graphical or tex-
tual representation. From the scenarios, an automated theo-
rem prover in which the laws of concurrency [SI have been
embedded infers a corresponding process-based specifica-
tion expressed in an appropriate formal language (currently
we are using CSP, Hoare’s language of Communicating Se-
quential Processes [I I], [12], but other languages may al-
ternately be used).

A process-based specification is far more amenable to
analysis, and also forms a more appropriate basis for code
generation. As much as possible, R2D2C makes use of
widely available tools and notations that are well-trusted
and that have been demonstrated to be useful in the devel-
opment of high quality systems [161.

A “short-cut’’ approach to R2D2C [9], [101 avoids the use
of an automated theorem prover, which is computationally
expensive. This alternative approach involves the inference
of a corresponding process-based specification (in a lan-
guage we have named EzyCSP) without a theorem prover,
but requires a (one time) proof of the translation in order
to preserve the mathematical underpinnings of the R2D2C
approach. Figure 1 illustrates those parts of the approach
for which we have built a prototype tool (described in the
remainder of this paper), and shows where commercially
available and public domain tools may be used to support
the approach [16].

Iv. LAWS OF CONCURRENCY

We use the term laws of concurrency to refer to a large
number of rules, equivalences and interrelationships of CSP
operators, as detailed in [SI. These laws allow us to demon-

3

Bespoke Tools

Scenarms
Capture

existing prototype

future enhancement = commercially available

w Generator

Fig. 1. The R2D2C approach and current status of the prototype.

strate equivalences in CSP models, most of which also hold
for concurrent systems in general.

In CSP, two process expressions are deemed to be equiva-
lent if they can be demonstrated to have the same semantic
interpretation in the current semantic model of CSP (e.g.,
traces, failures-divergences) that we are applying. For com-
plex systems in which we wish to consider deadlock and
livelock, a more powerful semantic model, such as failures-
divergences, may be required. For simple systems, it may
simply be the original traces model of CSP [12]. (A trace
of a process, in CSP terminology, is the sequence of atomic
events that the process has engaged in up to a given point in
time.)

For example, in the simple traces model, we can demon-
strate that parallel composition is both commutative and as-
sociative by proving that

t(PIIQ) = t(Qllp)

and
tpll(QIIR) = t(PIIQ)IIR.

These rules (commutativity and associativity) now en-
able us to rewrite CSP expressions in various ways. Ad-
ditionally, refinement may be defined appropriately in the
semantic model. If (in that semantic model) we can prove
that

4 I1 . . . llpn G P
then we may move up and down through various levels of
abstraction, and either increase (or decrease) the degree of
concurrency in the CSP model by substituting
f o r P (o r P f o r P I I I . . . I [P,).

The R2D2C tool is supported by having a deep embed-
ding of these laws of concurrency in the theorem prover
(currently ACL2). Sufficient rules are added to the theorem
prover to capture the laws, and their interrelation in various
semantic models, to enable proof of a plethora of equiv-
alences and refinements. The relevant semantic model of
CSP may also be used to prove properties and invariants. It
can be used to investigate whether certain conditions arise
or not, whether certain occurrences can be recovered from,

I I . . . I

to demonstrate (in the more sophisticated models) the exis-
tence or absence of deadlock or livelock, etc.

Typically, the laws of concurrency are used to provide
an interpretation for process expressions. That is, we prove
two process expressions to be equivalent by demonstrating
that they have the same interpretation in the given semantic
model. For example, in the traces model, the rules might
be used to generate the sets of traces of two process expres-
sions, which are then compared to determine whether they
are equal or not. In the R2D2C approach, we apply the laws
in the opposite direction: a set of traces is examined to infer
an equivalent process expression.

V. PROTOTYPE TOOL

Our R2D2C approach may easily be adapted to use other
notations. We are currently using CSP. In part, this is be-
cause we believe it is highly appropriate for the classes of
systems with which we ourselves are concerned. Addition-
ally, it is well known in the profession and widely taught in
college courses, and so should be familiar to many. Lastly,
several commercial and public domain tools are available
to support its use and implementation in Java and other pro-
gramming languages [7].

The formal model, expressed in CSP in this case, is the
central part of the proposed approach, which conforms to
a Model Driven Architecture (MDA) [131. The prototype
tool automatically generates the code from the CSP model
(or design) (Figure 2) into which the tool has already trans-
formed the requirements [161.

Two major issues must be addressed:
0 translating the CSP model into code, and
0 translating the requirements into the CSP model.

The tool transforms the derived design (CSP model) into
an equivalent software representation (code) using Java as
the target programming language [16]. There were several
reasons for selecting the Java programming language [4]
both for tool implementation and for the target platform.

0 Java is a general-purpose, concurrent, class-based,
object-oriented programming language, with very
few implementation and hardware dependencies.

..

4

Computationally independent layer

Platform independent layer

Platform specific layer
(Java)

I

Fig. 2. MDA approach

0 An off-the-shelf implementation (library) of CSP for
Java [11 is available. While Communicating Sequen-
tial Processes for Java (JCSP) does not provide di-
rect CSP-to-Java mapping, it conforms to the CSP
model of communicating systems for Java multi-
threaded applications [14]. There is also support for
distributed JCSP components using JCSP.net [23].
Java Swing [22], in combination with some available
Java IDES, greatly simplifies user interface develop-
ment.
Many Java-based translator development tools are
available.

The prototype tool implementation in Java uses off-the-
shelf components. A Swing-based user interface provides
a transparent layer for entering the requirements and view-
ing the resulting model [16]. Figure 3 shows the high-level
program flow.

The translators are implemented using the ANTLR (AN-
other Tool for Language Recognition) tool [IS], which pro-
vides a framework for constructing recognizers, compilers,
and translators from grammatical descriptions. A discus-
sion of ANTLR and some related tools can be found in [20].
An English-like input language, specified as an ANTLR
grammar, is used to specify user requirements (Figure 4).
ANTLR uses the grammar to automatically generate the
translator. The translator is then used to generate the CSP
model that corresponds to the user requirements (Figure 5).
Figure 6 shows the graph-based representation of the sys-
tem (under development) [16].

VI. A REAL LIFE EXAMPLE

A. LOGOS

The Lights-Out Ground Operations System (LOGOS) is
a proof-of-concept NASA system for automatic control of
ground stations when satellites pass overhead and under
their control. LOGOS is a community of autonomous soft-
ware agents, exhibiting autonomic behavior and cooperat-
ing to perform the functions that in the past have been per-
formed by human operators using traditional software tools
such as orbit generators and command sequence planners.
It is designed to operate in “lights out” mode (i.e., with-

out human intervention except in situations where problems
and anomalies can no longer be dealt with by the system
itself). The interested reader is directed to more detailed
descriptions of LOGOS, given in [191 and [21].

B. LOGOS in R2D2C

We will not consider the entire LOGOS system here. Al-
though a relatively small system, it is too extensive to il-
lustrate in its entirety in this paper. Instead, we will take
a couple of example agents from the system, and illustrate
their mapping from natural language descriptions through
to implementation in Java code.

Let us first illustrate, via a trivial example, how scenarios
map to CSP. Suppose we have the following as part of one
of the scenarios for the system:

if the Spacecraft Monitoring Agent receives a “fault” advi-
sory from the spacecraft the agent sends the fault to the
Fault Resolution Agent

OR
if the Spacecraft Monitoring Agent receives engineering

data from the spacecraft the agent sends the data to the
Trending Agent

That part of the scenario could be mapped to structured
text as:

inSMA?fault from Spacecraft
then outSMA!fault to FIRE

else
inengSMA?data from Spacecraft

then outengSMA!data to TREND

The laws of concurrency would allow us to derive the
traces as:

tSMA 2 { () , (inSMA, fault),
(inSMA, fault, outSMA, fault)} U

{ (), (inengSMA, data),
(inengSMA, data, outSMA, data)}

From the traces, we can infer an equivalent CSP process
specification as:

SMA = inSMA?fault -+ (outSMA!fault + S K I P)
1 (inengSMA?data --f outengSMA!data ---f S K I P)

Let us now consider a slightly larger example, the
LOGOS Pager Agent, and illustrate its implementation in
Java. The pager agent sends pages to engineers and con-
trollers when there is a spacecraft anomaly and there is
no analyst logged on to the system. The pager agent re-
ceives requests from the user interface agent that no ana-
lyst is logged on, gets paging information from the database
agent (which keeps relevant information about each user of
the system-in this case the analyst’s pager number), and,
when instructed by the user interface agent that the analyst

5

Natural
Language

input
- Requirements -

Fig. 3. High-level program flow

1 L L - A i i m ~ i + J i w e w

j l [D e s i g n Code 1 Testing 1
c ha n n e I a n a I y s t m e s s age, data b a s e re q u e s t, me s s a g e, me s s age not r e c o y n ize d , pa g et t i u
Userlnterface = pagerrequest I 0 -’ Userlnterface ,
Database = databaserequest 3 x - ’ pagernumber 10 -’ Database,
Pager= pagetrequest 3 x - > databaserequest I 0 -> Pager 0 pagetnumber 3 x - > analystrr
Analyst = analystmessage ‘7 x -> Analyst 0 stoppaggingmessage 7 x - > Analyst,
Sender = message IO -> Sender 0 messagenotrecognized 7 x-’ Sender,
System = Analyst [I { I I} I] Database [I {I I) I] Pager [I {I I} I] Sender [I {I I) I] Userlnterface ,

1
-- I mquirements -\’Design\ Code] Testing 1

I

Userlnterface sends pagerrequest.
Database receives databaserequest then sends pagernumber.
Pager receives pagerrequest then sends databaserequest or receives pagernumber

Sender sends message or rece

Fig. 4. Input requirements

I File Edit Tools Help

Fig. 5. CSP model

6

Fig. 6. Graphical representation of a system

has logged on, stops paging. These scenarios can be re-
stated in more structured natural language as follows:

if the Pager agent receives a request from the User Interface
agent, the Pager agent sends a request to the database
agent for an analyst’s pager information and puts the
message in a list of requests to the database agent

OR
if the Pager agent receives a pager number from the

database agent, then the pager agent removes the mes-
sage from the paging queue and sends a message to the
analyst’s pager and adds the analyst to the list of paged
people

OR
if the Pager agent receives a message from the user inter-

face agent to stop paging a particular analyst, the pager
sends a stop-paging command to the analyst’s pager and
removes the analyst from the paged list

OR
if the Pager agent receives another kind of message, reply

to the sender that the message was not recognized

The above scenarios would then be translated into CSP.
Figure 7 shows a partial CSP description of the pager agent.
This specification states that the process PAGER-BUS re-
ceives a message on its “Zin” channel and stores it in a
variable called “msg”. Depending on the contents of the
message, one of four different processes is executed. If
the message has a START-PAGING performative, then the
GET-USERJNFO process is called with parameters of the
type of specialist to page (pagee) and the text to send the
pagee. If the message has a RETURNDATA performative

with a pagee’s pager number, then the database has returned
a pager number and the BEGINPAGING process is exe-
cuted with a parameter containing the original message id
(used as a key to the db-waiting set) and the passed pager
number. The third type of message that the pager agent
might receive is one with a STOP-PAGING performative.
This message contai ns a request to stop paging a particular
specialist (stored in the pagee parameter). When this mes-
sage is received, the STOP-PAGING process is executed
with the parameter of the specialist type. If the pager agent
receives any other message than the above three messages,
an error message is returned to the sender of the message
(which is the first item of the list) stating that the message
is “UNRECOGNIZED’. After this, the PAGERBUS pro-
cess is again executed.

The R2D2C prototype tool will produce Java code from
the CSP model as follows.

class Pager extends Thread (
Transaction analystmessage;
Transaction databaserequest;
Transaction messaqenotrecoqnized;
Transaction pagernumber;
Transaction pagerrequest;
Transaction stoppagqinqmessaqe;
boolean running;

public Paqer(Transacti0n analystmessaqe,
Transaction databaserequest,
Transaction messaqenotrecognized,
Transaction pagernumber,
Transaction pagerrequest,
Transaction stoppaqgingmessage) {

this.ana1ystmessage = analystmessaqe;
this.databaserequest = databaserequest;

PAGERBUsdb_,iting, paged = page,:h?mSg -+

case

GET-USER_INFOdb-~aitin~, paged. pagee. lex1

if msg = (STARTPAGING, specialist, text)

ifmsg = (RETURNDATA, pagernum)

ifmsg = (STOPPAGING, pagee)

otherwise

BEGINPAGINGdb-wairing, paged, in-rt'plyJoid(mg). pagernirm

STOP-CO~ACTdb-~aiting, paged, pagee

page,: lout!(head(msg), UNRECOGNIZED) + PAGER4 US&-waiting, paged

Fig. 7. Partial CSP description of the pager agent.

this,messagenotrecognized =

this.pagernumber = pagernumber;
this.pagerrequest = pagerrequest;
this.stoppaggingmessage =

messagenotrecognized;

stoppaggingmessage;)

public void r u n 0 (
int index = 0;
running = true;

while (running) (
switch (index) (
case 0:

while (pagerrequest.committed0 ==

Test .out.println ("pagerrequest");
Test. out. flush () ;
while (databaserequest.committed0 ==

Test.out.println("databaserequest");
Test .out .flush 0 ;
break;

while (pagernumber.committed0 ==

Test.out.println("pagernumber");
Test.out.flush0;
while (analystmessage.comitted0 ==

Test.out.println("ana1ystmessage");
Test .out .flush() ;
break;

while (stoppaggingmessage.committed0 ==

Test.out.println("stoppaggingmessage");
Test .out. flush () ;
break;

while (messagenotrecognized.committed0 ==

Test.out.println("messagenotrecognized');
Test.out.flush0;
break;)

false) ;

false) ;

case 1:

false) ;

false) ;

case 2:

false) ;

case 3:

false) ;

index++;
index)))

C. Results

A formal specification of LOGOS in CSP had previously
been undertaken by hand [IS]. This was most insightful,
highlighting over 80 errors and anomalies in the require-
ments of a relatively small system (LOGOS is based, es-
sentially, on ten interacting agents). While many of these
were minor oversights that only would have caused incon-
veniences, others were more significant.

A great advantage of using an example for which we al-
ready have a formal specification is that we can compare
the system derived by our prototype. tool with the manually
derived formal specification.

Several errors of omission were found in LOGOS. A typ-
ical sampling of these follows.

0 The implementation left undetermined what happens
if the pager agent receives no response within a spec-
ified amount of time. In that case, should the pager
agent automatically resubmit a page, or should this
command come from the user interface agent?

0 It was left undetermined whether the pager agent
should change whom they are paging after some pre-
scribed elapsed period of time with no response to
the page, and what that time interval should be. Or,
again, should that information come from the UIFA?

0 It was left undetermined what happens when the
pager agent receives a request to page someone that
it has already paged, yet there is not a response to the
page and a request to stop paging that person has not
been received. In this situation, the pager agent can
either re-page the party or ignore the request. In addi-
tion, if a party can be paged multiple times, does the
software have to keep track of the number of times
the party was paged or other relevant information?

0 It was left undetermined whether the pager agent
should cache specialist pager numbers and informa-
tion for a specific amount of time, or should always
request this information from the database (even if

8

there is an active, unanswered page for a specialist).
There is nothing specified as to what should be done
if the requested pagee does not exist.

Our prototype tool was able to uncover all of the errors
and anomalies we found with our manual inspection. We
were surprised when we first ran it to find that it halted
within seconds, having found yet another error that had
been introduced into the requirements (due to a typograph-
ical error) when changes were made following the original
manual formal specification. The prototype tool can cope
with the LOGOS requirements, generating a design and a
Java implementation in a matter of minutes, whereas man-
ual specification had taken several days and code generation
by hand took several weeks.

D. Range of Applicability

The R2D2C method and the associated tool are highly
applicable to those classes of system whose requirements
may be expressed as scenarios, whether in natural language
or some graphical or other textual representation.

It is particularly appropriate for use with systems that
involve high degrees of concurrency. This naturally in-
cludes most of NASA's missions, and in particular current
and forthcoming autonomous systems, where missions will
involve greater degrees of self management. This is essen-
tially the class of systems for which we were first motivated
to develop the approach.

VII. FURTHER APPLICATIONS & FUTURE WORK

We have described a prototype tool to support formal
Requirements-Based Programming. In its current realiza-
tion, that tool takes requirements expressed in (constrained)
natural language, derives a formal model (currently ex-
pressed in CSP), and generates a simple Java implemen-
tation.

As one would expect, most of these notations may be
substituted with alternative (but equivalent) notations. Re-
quirements input may be given as UML use cases, for ex-
ample, or in a tabular format. Other process algebras may
be used for the internal representation of the formal model
(design). And, as we pointed out in Section 111-A, the code
produced need not necessarily be code in a conventional
programming language.

At the time of writing, we are currently applying the tool
to procedures that may be used in the Hubble Robotic Ser-
vicing Mission (HRSM). HRSM is an unmanned servicing
mission that will use two robot arms, using a combination
of telecontrol and robotic automations, to replace cameras
and gyroscopes and perform other upgrades on the Hubble
Space Telescope (HST). Servicing will take extended peri-
ods of time, many lasting several days, under the constraints
of limited battery power, and re-planning will be necessary
after launch as it is only at this point that the final orbital
phasing is known.

Our experiences using R2D2C to generate the ordering
of telecontrolled operations, and the instructions for robotic
devices, are described in [17].

We are also looking at using this technology for valida-
tion and verification of expert systems and for capturing
expert system domain knowledge, which we view essen-
tially as requirements. The approach may be applied to
expert systems used in automating ground control of var-
ious spacecraft, such as Advanced Composition Explorer
(ACE).

Future work will include
the development of several analysis and validation
tools (as shown in Figure 1);
addition of support for what-if analysis and alterna-
tive implementations;
support for a variety of graphical, textual, and tabular
input notations, simultaneously;
improving the quality of the inference (by a theorem
prover) of process-based specifications from require-
ments;
optimizing code generation;
improving the user interface of the prototype; and
applying the tool to further complex real-life exam-
ples.

VIII. CONCLUSIONS

A tool to support the Requirements-to-Design-to-Code
(R2D2C) method and a simple example of its applica-
tion, as presented in this paper, illustrates the potential for
augmented requirements-based programming. The NASA
prototype Lights Out Ground Operation System (LOGOS)
is an example of the class of appropriate applications of
the R2D2C method-where system requirements can be
stated as scenarios. The behavior of a LOGOS agent can
be described in terms of scenarios, which the prototype
R2D2C tool can transform into EzyCSP, a subset of the
formal specification language Communicating Sequential
Processes (CSP). The tool transforms the CSP model into
Java code representing the original requirements (scenar-
ios). The transformations are provably equivalent, thus
qualifying R2D2C as a mathematically sound method for
transforming requirements into an implementation. Since
the CSP model can be analyzed mathematically as to sat-
isfaction of any given propositions, R2D2C produces vali-
dated requirements, and since the model can be transformed
into a provably equivalent implementation, R2D2C pro-
duces a system with verifiable correctness.

ACKNOWLEDGEMENTS

Part of this work was supported by the NASA Goddard
Space Flight Center Technology Transfer Office. Denis
GraCanin was supported by an ASEWNASA Summer Fac-
ulty Fellowship hosted at the NASA Software Engineering
Laboratory (Code 581), NASA Goddard Space Flight Cen-
ter. John Erickson was supported by the NASA Student In-

9

ternship Program and by the Information Systems Division
(Code 580) at NASA Goddard Space Flight Center.

The technology reported in this paper is protected in the
USA and other countries by patent applications assigned to
the United States government.

REFERENCES
Communicating sequential processes for Java (JCSP).
http://www.cs.kent.ac.uk/projects/ofa/jcsp/.
F. L. Bauer. A trend for the next ten years of software engineering. In
H. Freeman and P. M. Lewis, editors, Software Engineering, pages
1-23. Academic Press, 1980.
F. P. Brooks, Jr. No silver bullet: Essence and accidents of software
engineering. IEEE Computer, 20(4): ICb19, April 1987.
J. Gosling, B. Joy, G. Steele, and G. Bracha. JavaT" Language
SpeciJcarion. Addison Wesley, Boston, second edition, 2000.
D. Hael. From play-in scenarios to code: An achievable dream.
IEEE Computer, 34(1):53-60,2001.
D. Hare]. Comments made during presentation at "Formal
Approaches to Complex Software Systems" panel session. ISoLA-
04 First International Conference on Leveraging Applications of
Formal Methods, Paphos, Cyprus. 3 I October 2004.
M. G. Hinchey. A formal design method for real-time Ada software.
In L. Collingbourne, editor, A h : Towards Maturity, Computer and
Communications Series 6 .10s Press, Amsterdam, 1993.
M. G. Hinchey and S . A. Jarvis. Concurrent Systems: Formal De-
velopment in CSP. International Series in Software Engineering.
McGraw-Hill International, London, UK, 1995.
M. G. Hinchey, I. L. Rash, and C. A. Rouff. Requirements to design
to code: Towards a fully formal approach to automatic code gener-
ation. Technical Report TM-2005-2 12774, NASA Goddard Space
Flight Center, Greenbelt, MD, 2004.
M. G. Hinchey, J. L. Rash, and C. A. Rouff. A formal approach
to requirements-based programming. In Proc. IEEE International
Conference and Workshop on the Engineering of Computer Based
Systems, ECBS-2005, Greenbelt, Maryland, USA, 4-5 April 2005
(to appear). IEEE Computer Society.
C. A. R . Hoare. Communicating sequential processes. Communicn-
!ions ($!he 4CM. 21(8):66&677, 1978.
C. A. R. Hoare. communicating Sequential Processes. Prentice
Hall International Series in Computer Science. Prentice Hall Inter-
national, Englewood Cliffs, NJ, 1985.
A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model
Driven Archirecrure: Practice and Promise. Addison-Wesley,
Boston, 2003.
D. Lea. Concurrent Pm ramming in JavaT": Design Principles
and Patterns. The Java4M Series. Addison-Wesley hfessional ,
Reading, Massachusetts, second edition, 2000.
T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser
generator. Sofware Practice and Experience, 25(7):789-810, July
1995.
J. L. Rash, M. G. Hinchey, C. A. Rouff, D. Gracanin, and J. D. Erick-
son. Experiences with a requirements-based programming approach
to the development of a NASA autonomous ground control system.
In EASe, 2nd IEEE Workshop on Engineering of Autonomic Systems,
Pmc. ECBS 2005, 12th IEEE International Conference on Engineer-
ing of Computer-Based Systems, Greenbelt, MD, 4-7 April 2005.
J. L. Rash, M. G. Hinchey, C. A. Rouff, and D. Gratanin. Formal
requirements-based programming for complex systems. In Proc. In-
ternational Conference on Engineering of Complex Computer Sys-
tems, Shanghai, China, 16-20 June 2005. IEEE Computer Society
Press.
C. A. Rouff, J. L. Rash, and M. G. Hinchey. Experience using for-
mal methods for specifying a multi-agent system. In Pmc. Sixth
IEEE International Conference on Engineering Of C0mpk.x Com-
puter Systems (ICECCS 2ooO), Tokyo, Japan, 2000. IEEE Computer
Society Press.
C. A. Rouff, W. F. Truszkowski, M. G. Hinchey, and J. L. Rash. Ver-
ification of emergent behaviors in swarm based systems. In Proc.
I Ith IEEE International Conference on Engineering Computer-
Based Systems (ECBS), Workshop on Engineering Autonomic Sys-

tems (EASe), pages 443448, Bmo, Czech Republic, May 2004.
IEEE Computer Society Press.

1201 Y. Smaragdakis, S. S . Huang, and D. Zook. Program generators and
the tools to make them. In PEPM '04: Proceedings of the 2004
ACM SIGPLAN symposium on Partial evaluation and semantics-
based pmgram manipulation, pages 92-100. ACM Press, 2004.

[21] W. F. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A. Rouff.
Autonomous and autonomic systems: A paradigm for future space
exploration missions. IEEE Transactions on Systems. Man and Cy-
bernetics, Part C, 2006 (to appear).

(221 K. Walrath, M. Campione, A. Huml, and S. Zakhour. JFCSwing Tu-
torial, The: A Guide to Constructing GUIs. Addison Wesley, Boston,
second edition, 2004.

(231 P. H. Welch, J. R. Aldous, and J. Foster. CSP networking for Java
(JCSPnet). In Proceedings of the Global and Collaborative Comput-
ing Workshop (ICCS 2002). volume 2330 of Lecture Notes in Com-
puter Science, pages 695-708. Springer-Verlag. 2002.

